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The transversal derivatives of the conservation equations for laminar boundary layer f low 
accounting for heat transfer are discretized by control volumes. The resulting system of 
ordirlary differential equations of first order is solved numerically by a Runge-Kutta 
integration process. Based on the qualitative results of both velocity and temperature, this 
hybrid solution method was found to be competitive with the highly refined solution 
methods that represent the current state-of-the-art. 
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Introduction 

Heat transfer by forced convection in laminar boundary-layer 
flows has been analyzed extensively for a thin flat plate with a 
sharp leading edge exposed to a variety of surface boundary 
conditions. Typical studies can be found in the classical book by 
Schlichting 1 on this subject. 

With the advent of computers, it is possible to routinely solve 
many boundary-layer problems by approximate, purely 
numerical procedures. In general, the discretization procedures 
for the finite-difference formulations are based on Taylor's series 
or control volume approaches. To our knowledge, no study 
exists on thermal boundary layers utilizing a hybrid formulation 
combining finite-difference and purely differential components 
in the set of governing equations. This unique approach has 
motivated the present investigation. 

The conservation equations for the boundary layers along a 
flat plate are first transformed into a system of ordinary 
differential equations of first order by discretizing the 
transversal derivatives via the control volume approach, while 
keeping the axial derivatives in continuous form. The resulting 
system of differential equations is then solved simultaneously by 
a Runge-Kutta integration scheme to determine the unknown 
quantities of velocity and temperature inside the boundary 
layers. 

Numerical results using a coarse grid consisting of only seven 
lines at the trailing edge of the plate seem to be satisfactory for 
fluids covering the spectrum of Prandtl numbers between 0.01 
and 15. Comparisons of both velocity and temperature profiles 
have been made with the classical solutions reported in the open 
literature by Schlichting. 1 These preliminary calculations are 
encouraging and are being extended to other situations 
involving more complex hydrodynamic and thermal conditions 
in boundary-layer problems. 

F o r m u l a t i o n  

Consider a semi-infinite flat plate maintained at a uniform 
temperature tw and placed in a fluid flow having a constant 
velocity u= and a constant temperature too. The properties of the 
fluid are assumed to be invariant with temperature. In addition, 
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the viscous dissipation and axial conduction effects are 
neglected. Under these basic assumptions, the conservation 
equations for the steady, two-dimensional laminar boundary- 
layer flow under consideration can be written as 

~u Ov ~+~=o (1) 

u - - + v - - = v - -  (2) 
Ox Oy Oy 2 

~t ~t t~Et 
u - - + v - - = ~ - -  (3) 

Ox ~y t~y 2 

along with the imposed boundary conditions 

x=0,  y>0 ,  u=u~, t=t~  (4) 

x>0,  y---~oo,  u=u=, t=t~  (5) 

y=0 ,  u=0,  v=0,  t= t  w (6) 

rhe leading edge of the plate is located at x=0 ,  and y is 
measured normal to the surface of the plate. 

Numerical technique 
The governing Equations 1-3 are of the form 

~(.#,)+~(v~)=~y r ,  +s, (7) 

where ~ denotes a general dependent variable: l ,  u, and t for 
conservation of mass, momentum, and energy, respectively. 

In this section, we outline the mathematical and numerical 
concepts underlying the finite-difference formulation of 
Equation 6. Correspondingly, a technique that replaces a partial 
differential equation in two independent variables by an 
appropriate system of ordinary differential equations in one of 
these variables will be explored here. This procedure is commonly 
identified as the method of lines and is described by Liskovets. 2 
Accordingly, if the independent variables of a partial differential 
equation are x and y, as in Equation 7, the region of integrations 
is divided into strips parallel to the flat plate by lines y =  
constant (Figure 1). Then, the partial derivatives in the y 
direction are discretized by finite-difference expressions. 
Therefore, this combined procedure leads to a system of first- 
order ordinary differential equations for q~ along each line in 
terms of the only independent variable, x. 
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Figure I Distribution of lines 
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Following Patankar, a the discrete differences in Equation 7 
will be based on control volume balanced in the y direction 
only. In view of this, a physical region is divided into a set of 
control volumes, such as those shown by dashed lines in Figure 
2. These control volumes are of size Ax (infinitesimal) by Ay 
(finite) and are shown centered on line P. The faces lie at n and s, 
midway between lines P and N and P and S, respectively. When 
applied to the control volume P, the integral balance of 
Equation 7 yields 

~x (uqb ) dy + (vdp ). -- (vq~ ), 

a4) ae~ , 

Assuming a unit depth in the z direction, the integrals are 
evaluated over the areas Ay x (1) (Equation 1) of the faces of the 
control volume. To proceed with the analysis, the integrands in 
Equation 8 are approximated in a way that the quantities u, ~, 
and S~ are assumed constant between the boundaries n and s of 
the control volume. Therefore, the end result is given by a 
general ordinary differential equation of first order, which may 
be written as 

d F4, c~qb 1 
dx (Updpe) Ay ay Ay (vdp)~ + $4~ P (9) 

This single equation describes the continuous variation of each 
of the transported quantities along the lines drawn in the x 
direction parallel to the plate. 

In the light of the foregoing discussion, and for simplicity 
using a uniform spacing in the y direction, the set of descriptive 
Equations 1-3 is transformed to 
du p 1 

(v . -v~)  mass (10) 
dx Ay 

d . 2- v /au \"  1 
T [ u e l = T  I T ]  -l-T-- (VsUs--I)nUn) momentum (11) 
ax zay \ c y / s  zxy 

d ~ /c?t\" 1 
d x  (Uptp)=~yy / l\~yy)~-~y-y (vt)~ energy (12) 

Moreover, these equations may be rearranged as follows: 

v. = v~- (Ay) du__£p (13) 
dx 

n 

,y 

Figure 2 Control volume in one dimension 

a, ,_  1 
(14) 

dx A y ( 2 u e -  u,,) [_ \Oy,l~ 
I I I J 

- v t  (15) 
dx upAy ff}y s Up dx 

The system of first-order ordinary differential equations given 
by Equations 14 and 15 provides the axial velocity and 
temperature along each line of the control volume subject to 
the initial conditions 

x = 0 ,  up=u~,  tp=too (16) 

In addition to this, the transversal velocity may be calculated 
directly from the evaluation of Equation 13. 

The necessary number of lines drawn inside the boundary 
layer is determined for each x step by adding four new lines to 
the first 4 originally selected (Figure 1) so that the conditions 

u t - - t  w 
- - > 0 . 9 9  - - > 0 . 9 9  (17) 
U~ t ~  --  t w 

are automatically satisfied. Thus the required number of lines 
increases in the downstream direction and follows the natural 
growth of the boundary layers, as Figure 1 shows. 

Results and discussion 

Numerical solutions of the descriptive equations (Equations 13- 
15) have been carried out for Pr=0.01,  0.7, and 15 using a 
fourth-order Runge-Kutta subroutine. With a step size of 10-6, 
Figure 3 shows the resulting values for the dimensionless axial 
velocity as a function of ~/ using seven lines uniformly 

Notation 
Pr Prandtl number, fro: 
Rex Local Reynolds number, u~ox/v 
S~ Source term, Equation I 
t Temperature 
tw Wall temperature 
t o Free stream temperature 
u Axial velocity component 
u~ Free stream velocity 

u 
Nondimensional value of u, - -  

Uoo 

v Transversal velocity component 
x Axial coordinate 
y Transversal coordinate 

Thermal diffusivity 
F ,  Diffusion coefficient, Equation 7 
A Difference 

Uoo r/ Similarity variable, y -  
2vx 

0 Nondimensional temperature, ( T -  T~,)/(T..,,- T~o ) 
v Kinematic viscosity 
~b Generalized variable, Equation 1 
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Figure 3 Laminar velocity profile 
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Figure 4 Laminar temperature profile for various Prandtl numbers 

distributed. A comparison between these values and the 
predicted velocities of the similarity solution reported in 
Schlichting 1 appears to be reasonably good. 

Attention may now be turned to the corresponding 
temperature profiles plotted in Figure 4 as a function of 1/for 
parametric values of the Prandtl number. The calculated 
temperatures using only seven lines with equal intervals are 
compared with those provided by the similarity solution. 
Agreement is quite good for both cases tested having Pr = 0.7 
and 15. 

As a final remark, it can be said that an explicit finite- 
difference procedure incorporating a combination of differential 
and finite-difference components has been developed for the 
analysis of laminar boundary-layer flows over flat plates. Its 
salient features are simplicity, directness, coarse grid, stability, 
and no required iterations. The predictions for velocity and 
temperature having an average CPU time of 25 s on a PDP-10 
computer agree well with the classical solutions. From this 

discussion, it appears that the success of the methodology may 
justify further work, including additional hydrodynamic and 
thermal effects characterizing more complex situations in 
boundary-layer theory. 

In addition to these cases tested, Figure 4 also shows a 
limiting case of Pr=0.01. Further examination of this figure 
shows the results for Pr = 15 using a grid of 14 lines overlapping 
with those using 7 lines. 
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